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Introduction
AutoProof is an auto-active1 verifier for the Eiffel programming language;
it proves functional correctness of Eiffel programs annotated with contracts.
The goal of this tutorial is to show how to verify Eiffel programs with Auto-
Proof through hands-on exercises.

Preparations
To use AutoProof locally you can install EVE on your machine. Although
it is possible to use the online version of AutoProof to do the verification
exercises, some options are not available on the web.

You can download the EVE delivery at

http://se.inf.ethz.ch/research/eve/builds

Downloads for the examples and exercises as well as links to using the
web interface of AutoProof are available here:

http://se.inf.ethz.ch/research/autoproof/tutorial

Structure
Each of the following sections describes in detail the use of AutoProof based
on increasingly complex examples. Each example is used throughout one
section to explain some of the concepts behind AutoProof and how they
are used to verify programs. Each section also has hands-on exercises with
verification tasks for one or more programs.

1AutoProof tries to achieve an intermediate degree of automation in the continuum
that goes from automatic to interactive.

i

http://se.inf.ethz.ch/research/eve/builds
http://se.inf.ethz.ch/research/autoproof/tutorial


AutoProof Tutorial March 2015

Contents
1 Verification of Basic Properties 1

1.1 Input Language . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Routine Annotations . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Debugging Verification . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Hands-On: Clock . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Verification of Algorithmic Problems 11
2.1 Mathematical Model Library . . . . . . . . . . . . . . . . . . . 12
2.2 SIMPLE_ARRAY and SIMPLE_LIST . . . . . . . . . . . . . . . . . 13
2.3 Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Hands-On: Linear and Binary Search . . . . . . . . . . . . . . 15
2.6 Ghost State and Ghost Functions . . . . . . . . . . . . . . . . 17
2.7 Accessing Pre-state . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Integer Overflows . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Hands-On: Sorting . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Object Consistency and Ownership 21
3.1 State of an Object . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Object State Queries . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Encoding Ownership . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Wrapping and Unwrapping . . . . . . . . . . . . . . . . . . . . 25
3.5 Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Modification of Owned Objects . . . . . . . . . . . . . . . . . 27
3.7 Hands-On: Ring Buffer . . . . . . . . . . . . . . . . . . . . . . 28

ii



AutoProof Tutorial March 2015

1 Verification of Basic Properties
To prove functional correctness automatically, a program needs a machine-
readable specification. We are using Eiffel—an object-oriented programming
language— which allows one to write contracts as part of the program. Each
Eiffel routine is equipped with pre- and postconditions and each class has a
class invariant.

We will use the Account example to show the basic concepts of Auto-
Proof. The example consists of the two classes ACCOUNT and ACCOUNT_TEST.
The first class models a bank account and the second class consists of two
test cases that show proper and improper usage of the class. The full code
of class ACCOUNT is shown in Figure 1.

First you can look through the example and verify the two classes; all
routines, except for the deliberately failing test case, will be successfully
verified.

1.1 Input Language
Eiffel Programs and Contracts

Here we give a short overview of the Eiffel programming language based on
the Account example.

Class definition Eiffel is an object-oriented programming language. Classes
are defined with the class keyword. If no inheritance clause is given (as in
this example), then the class implicitly inherits from the class ANY, which
serves as a common ancestor for all classes.

1 class

2 ACCOUNT

Constructors To define constructors for the class, you can use the create
keyword, followed by a comma-separated list of constructors called creation
routines. If no constructor is defined, the routine default_create will im-
plicitly become the only creation routine. In our example the routine make
will be the creation procedure.

1 create

2 make

1
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1 note
2 description: "Account class."
3 model: balance, credit_limit
4
5 class ACCOUNT
6 create make
7
8 feature {NONE} -- Initialization
9

10 make
11 -- Initialize empty account.
12 note
13 status: creator
14 do
15 balance := 0
16 credit_limit := 0
17 ensure
18 balance_set: balance = 0
19 credit_limit_set: credit_limit = 0
20 end
21
22 feature -- Access
23
24 balance: INTEGER
25 -- Balance of this account.
26
27 credit_limit: INTEGER
28 -- Credit limit of this account.
29
30 available_amount: INTEGER
31 -- Amount available on this account.
32 note status: functional
33 do
34 Result := balance + credit_limit
35 end
36
37 feature -- Element change
38
39 set_credit_limit (limit: INTEGER)
40 -- Set ‘credit_limit’ to ‘limit’.
41 require
42 limit_valid: limit ≥ (0).max(−balance)
43 modify_model ("credit_limit", Current)
44 do
45 credit_limit := limit
46 ensure
47 credit_limit_set: credit_limit = limit
48 end

49
50 deposit (amount: INTEGER)
51 -- Deposit ‘amount’ in this account.
52 require
53 amount_non_negative: amount ≥ 0
54 modify_model ("balance", Current)
55 do
56 balance := balance + amount
57 ensure
58 balance_set: balance = old balance + amount
59 end
60
61 withdraw (amount: INTEGER)
62 -- Withdraw ‘amount’ from this account.
63 require
64 amount_not_negative: amount ≥ 0
65 amount_available: amount≤ available_amount
66 modify_field (["balance", "closed"], Current)
67 do
68 balance := balance − amount
69 ensure
70 balance_set: balance = old balance − amount
71 end
72
73 feature -- Basic operations
74
75 transfer (amount: INTEGER; other: ACCOUNT)
76 -- Transfer ‘amount’ from this to ‘other’.
77 require
78 amount_not_negative: amount ≥ 0
79 amount_available: amount≤ available_amount
80 no_aliasing: other 6= Current
81 modify (Current, other)
82 do
83 balance := balance − amount
84 other.deposit (amount)
85 ensure
86 balance = old balance − amount
87 other.balance = old other.balance + amount
88 credit_limit = old credit_limit
89 other.credit_limit = old other.credit_limit
90 end
91
92 invariant
93 limit_not_negative: credit_limit ≥ 0
94 balance_not_credit: balance ≥−credit_limit
95
96 end

Figure 1: Account example.
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Features and visibility Routines and attributes (together called features)
are defined in feature blocks using the feature keyword. Feature blocks can
declare a visibility restriction by indicating a list of class names in curly
braces. For example the first feature block restricts the access of the make
routine to NONE, essentially hiding the routine from all other classes (no class
can inherit from NONE). The other feature blocks do not have any access
restriction and thus the features inside these feature blocks are public. It is
common to name feature clauses by adding a comment using the double-dash
-- comment style (there are no multi-line comments in Eiffel).

1 feature {NONE} -- Initialization

2 feature -- Access

3 feature -- Basic operations

Attributes Attributes are defined with an attribute name followed by the
type of the attribute. For all features it is common to add a comment on the
line following the feature declaration.

1 balance: INTEGER
2 -- Balance of this account.

Routines A routine declaration consists of the routine name, optional pa-
rameters, optional return type, optional precondition, routine body and op-
tional postcondition. The precondition denoted by the require keyword
and postcondition denoted by the ensure keyword are the specification of
the routine. The precondition holds prior to the execution of the routine,
and the postcondition holds afterwards. Therefore the precondition is the
responsibility of the client of the routine, whereas the postcondition has to
be established by the routine itself. If a pre- or postcondition is omitted, the
routine will have an implicit pre- or postcondition of True.

1 set_credit_limit (limit: INTEGER)
2 -- Set ‘credit_limit’ to ‘limit’.

3 require

4 limit_valid: limit ≥ (0).max(−balance)
5 modify_model ("credit_limit", Current)
6 do

7 credit_limit := limit

8 ensure

9 credit_limit_set: credit_limit = limit

10 end

3
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Assertion tags Each assertion, be it a precondition, a postcondition, a
class or loop invariant, or an intermediate check instruction, can have an
assertion tag. These tags are useful for debugging, as the feedback from
AutoProof will specify the tag of violated assertions.

Class invariants Class invariants are written at the end of a class using
the invariant keyword. Class invariants define the state of a consistent
object and hold by default whenever an object is visible to other classes, for
example at the beginning and end of each public routine.

1 invariant

2 credit_limit_not_negative: credit_limit ≥ 0
3 balance_not_below_credit: balance ≥−credit_limit

There are more details on how to write an Eiffel program and what spec-
ification can be written for the verification with AutoProof; this will be ex-
plained throughout the rest of the tutorial.

AutoProof Annotations

AutoProof supports tow forms of custom annotations: note clauses for fea-
tures and classes, and dummy routines made available through ANY.

Note clauses are used to denote special types of routines and attributes
that influence the verification like creation routines (see Section 1.5) or ghost
features (see Section 2.6). Additionally, note clauses are used to disable
defaults for implicit pre-/postconditions of the ownership methodology (see
Section 3.4).

The second form of AutoProof annotations are dummy features (routines
and functions with empty implementation) that can be used in assertions
or regular code. These features are defined in class ANY and are available
everywhere. AutoProof gives special semantics to these features, for example
to specify modifies clauses (see Section 1.4).

You can look at the AutoProof manual for a complete listing of custom
annotations of both note clauses and dummy features2.

1.2 Basic Properties
Booleans

The Eiffel boolean operations not, and, or, xor, and implies are supported
by AutoProof. The semi-strict operators and then and or else are also

2http://se.inf.ethz.ch/research/autoproof/manual/#annotations
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supported with the correct semantics that the right-hand side only needs to
be valid if the left-hand side does not already define the overall value of the
expression.

Integers

The Eiffel integer operations +, −, ∗, // (quotient of integer division), and
\\ (remainder of integer division) are supported by AutoProof. Integers in
AutoProof can be modeled in two modes, either as mathematical integers or
as machine integers. By default integers will be modeled as mathematical
integers, though AutoProof can also check overflows of bounded integers (see
Section 2.8).

The Eiffel comparison operations on integers = , 6= , <, >,≤ , and ≥ are
all supported.

References

Comparison of objects always uses reference equality. The standard equal-
ity operator a = b and inequality operator a 6= b work as expected; object
equality a ∼ b and inequality a � b are not supported and will fall back to
reference equality when used.

1.3 Models
AutoProof supports model-based contracts. Models are used to express the
abstract state space of a class and describe its changes. To define the model
of a class you add a model annotation to the note clause of the class. The
model may only consist of attributes of the class.

1 note

2 model: balance, credit_limit
3 class ACCOUNT · · ·

This makes the two attributes balance
and credit_limit model fields of the
class.

The idea behind model-based contracts is to have an abstract and concise
yet expressive way to specify the interface of a class. When using models
you use the class invariant to describe object validity in terms of the model
attributes. The effect of each procedure is expressed by relating the pre-
state of the model fields to their post-state. In addition you can express the
framing specification in terms of the model fields.

The Mathematical Model Library (MML, see Section 2.1) can be used
to model complex behavior. Also, ghost attributes might be introduced to

5
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define abstract behavior in terms of other functions or attributes and can
then be used as model fields (see Section 2.6).

1.4 Framing
The framing model that AutoProof uses is based on modifies clauses. The
ACCOUNT class deliberately used three different ways of specifying the modifies
clause to demonstrate the differences between them.

modify_model (fields, objects)

Using modify_model you can specify that model fields may change during
the execution of a routine. You can specify one or more model fields by
providing as first parameter a manifest string with the name of the model
attribute or a manifest tuple with multiple manifest strings. The second
parameter is either a single object, a single set of objects of type MML_SET,
or a manifest tuple with mixed objects or sets of objects.

1 deposit (amount: INTEGER)
2 require

3 · · ·
4 modify_model ("balance", Current)
5 do · · · end

This routine is allowed to mod-
ify the model field balance of the
Current object.

The effect of modify_model is as follows: each model attribute specified
in the modify_model clause as well as each non-model attribute can be mod-
ified in the routine. All model fields that are not listed remain unchanged.
This means in turn that for clients all non-model attributes are potentially
modified even though they are not listed in the modifies clause.

modify_field (fields, objects)

With modify_field you specify directly which attributes may be changed
by a routine. As before, you can specify one or more attribute names by
providing as first parameter a manifest string with the name of the model
attribute or a manifest tuple with multiple manifest strings. The second pa-
rameter is again either a single object, a single set of objects of type MML_SET,
or a manifest tuple with mixed objects or sets of objects.

This way of specifying the modifies clause is lower-level than specifying
which model fields may change. This is also the reason we are required to
add the ghost field closed in the example shown here. The closed field is

6
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1 withdraw (amount: INTEGER)
2 require

3 · · ·
4 modify_field (["balance", "closed"], Current)
5 do · · · end

This routine is allowed
to modify the attributes
balance and closed of
the Current object.

a boolean flag that is True whenever an object is in a consistent state (see
Section 3 for details).

modify (objects)

The third option to specify modifies clauses is to give a list of objects which
can be modified without limiting the modifications to certain attributes or
model fields. For this modifies clause you can specify mixed objects or sets
of objects.

1 transfer (amount: INTEGER; other: ACCOUNT)
2 require

3 · · ·
4 modify (Current, other)
5 do · · · end

This routine is allowed to
modify all attributes of
Current and other.

Since the objects may be modified freely, you have to specify the full ef-
fect on the modified objects. For example the transfer procedure of the
account example, the postcondition not only describes the effect on the
balance attribute of the two objects but also has clauses to specify that
the credit_limit attribute does not change. This is for demonstration pur-
poses only, it would be a better design to use modify_model instead (try to
change it!).

Giving an empty tuple as argument—modify ([])—denotes that nothing
may be modified, i.e., that the routine is pure.

Default Modifies Clauses

When no modifies clause is given a default modifies clause is used based on
the type of routine:

• For procedures (routines without a return value), the default modifies
clause is modify (Current). So all attributes can be modified in a
procedure if no specific modifies clause is given.

7
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• For functions (routines with a return value), the default modifies
clause is modify ([]). Therefore, by default, all functions are pure.

When you overwrite the default modifies clause for procedures, for ex-
ample to modify an object passed as parameter, and you want to be able to
modify the Current object as well, you will need to add modify (Current)
to the modifies clause (or a more specific version when only a subset of the
attributes needs to be modifiable).

Combining modifies annotations

You can add several modifies annotations to a modifies clause. The set of
modifiable objects and attributes is the union of all modifies annotations.

1.5 Routine Annotations
Creation Procedures

Creation procedures can be used as regular routines as well. Therefore,
AutoProof will verify all creation routines twice, once as creation routines
and once as regular routines. The context of the verification is different for
the two verifications, as for example for creation routines all attributes are
initialized to their default values before the routine is executed.

You can instruct AutoProof to verify a creation routine only once by
adding a creator annotation. This denotes the routine as being creation-
only and AutoProof will not verify it as a regular routine.

1 make

2 note

3 status: creator
4 do · · · end Marks make to be only a creation routine.

Functional Functions

AutoProof supports a special type of function, consisting of only a sin-
gle assignment to Result. To declare such a function you have to add a
functional annotation to the function. These functions are defined by their
implementation and have an implicit postcondition; given an implementation
Result := x the implicit postcondition will be Result = x.

8
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1 available_amount: INTEGER
2 note

3 status: functional
4 do

5 Result := balance + credit_limit

6 end

Marks available_amount to be
functional, therefore only con-
sisting of a single assignment to
Result.

1.6 Debugging Verification
The only feedback given by AutoProof is whether a routine is successfully
verified or if some specific assertions could not be proven. When the ver-
ification fails it can be necessary to find out which facts the verifier could
establish or even guide the verifier to the right conclusion. For this you can
use intermediate assertions (check instructions in Eiffel). During the debug-
ging process it can also be beneficial to assume specific facts and thus limit
the possible executions that the verifier considers during the proof.

Assertions

Using Eiffel’s check instruction you can add an intermediate assertion that
will be verified by AutoProof. This can help to check if you have the same
understanding of the state at a program point as the verifier. You can add
multiple expressions to a single check instruction, and each expression can
be equipped with a tag. AutoProof will show the tags in error messages.

check tag: expr end Check instruction to establish if expr holds.

Note that it is possible that when you have multiple consecutive assertions
successfully verified, removing an intermediate assertion will make the veri-
fication of later assertions fail. In these cases you have to keep the assertion
in order to guide the verifier towards the successful verification.

Assumptions

Eiffel does not support assumptions out of the box. To write an assumption
in AutoProof, you have to write a check instruction with the special tag
assume. AutoProof will assume the expression for the rest of the routine
without checking it.

You can use assumptions to limit the executions considered by the verifier.
For example by assuming False in a branch of a conditional instruction the
verification of that branch will always succeed.

9
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1 if · · · then
2 · · ·
3 else

4 check assume: False end

5 end

Ignores all code path that go through the
else branch.

Another way to use assumptions to limit executions it by restricting the
state space of otherwise unrestricted values. This can be used for example
to ignore executions where an array is empty.

check assume: not a.is_empty end Ignores executions where a is empty.

Inconsistencies

It can happen that verification succeeds due to inconsistent contracts or
assumptions. If you for example have a routine with the precondition a >0
and an additional class invariant a <0 (or an assumption a <0 in the body of
the routine), your specification is inconsistent. This is essentially equivalent
to an assumption of False and the verifier will be able to derive any fact
from it, including false ones.

A quick (though not completely safe) check for inconsistencies is to add
an assertion or postcondition False to your routine. If the verifier manages
to prove the assertion, this is a sign for an inconsistency in the specification.

1.7 Hands-On: Clock
The CLOCK class is modeling a clock counting seconds, minutes and hours
of a day. The class contains routines to create the clock, set the time, and
increase the time.

Task 1: Add a model declaration to define the abstract model.

Task 2: Add a class invariant to restrict the attribute values.

Task 3: Add a precondition to the creation procedure make.
You should be able to verify make and test_make.

Task 4: Add the specification to the set_∗ procedures.
You should be able to verify the set_∗ and test_set procedures.

Task 5: Add the specification to the increase_∗ procedures.
You should be able to verify both classes completely.

10
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2 Verification of Algorithmic Problems
An important aspect in the verification of programs is verifying algorithms.
In this section we will focus on the verification of algorithmic problems on
arrays, such as searching and sorting. The concepts needed to verify array
algorithms are also necessary for other types of algorithms.

We use the algorithm of finding the maximum element of an integer array
as an example. The code is shown in Figure 2. You can look through the
example again and verify it. In the rest of this section we will explain in
detail how one verifies such an algorithm.

1 class MAX_IN_ARRAY
2 feature -- Basic operations
3

4 max_in_array (a: SIMPLE_ARRAY [INTEGER]): INTEGER
5 -- Find the maximum element of ‘a’.
6 require
7 array_not_empty: a.count >0
8 local
9 i: INTEGER

10 do
11 Result := a[1]
12 from
13 i := 2
14 invariant
15 i_in_bounds: 2≤ i and i≤ a.sequence.count + 1
16 max_so_far: across 1 |..| (i−1) as c all a.sequence[c.item]≤ Result end
17 in_array: across 1 |..| (i−1) as c some a.sequence[c.item] = Result end
18 until
19 i >a.count
20 loop
21 if a[i] >Result then
22 Result := a[i]
23 end
24 i := i + 1
25 variant
26 a.count − i
27 end
28 ensure
29 is_maximum: across 1 |..| a.count as c all a.sequence[c.item]≤ Result end
30 in_array: across a.sequence.domain as c some a.sequence[c.item] = Result end
31 end
32

33 end

Figure 2: Maximum in array example.
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2.1 Mathematical Model Library
To express complex mathematical properties, AutoProof supports the Math-
ematical Model Library. This library consists of classes modeling sets, bags
(or multisets), sequences, maps, intervals, and relations. You can find an
API description of these classes online3.

MML classes do not have an implementation and should therefore only
ever be used for specifications (using ghost fields and ghost code as discussed
in Section 2.6). They have an efficient axiomatization in the back-end verifier,
and are therefore well suited to be used with AutoProof.

MML Types

The most important MML types are:

• MML_SET [G]: A set contains distinct objects. Each element can only be
contained once and the order is irrelevant.

• MML_SEQUENCE [G]: A sequence is an ordered list of elements. Indexing
starts at 1.

• MML_BAG [G]: A bag (or multiset) is a set where each element can appear
multiple times. The order of elements is irrelevant.

Shorthand Notations

Several shorthand notations exist to declare sets and sequences making the
use of MML classes easier.

• Sets of type MML_SET [ANY] can be declared using the Eiffel manifest
tuple notation: s := [a, b].

• Sets of type MML_SET [G] can be declared using the Eiffel manifest array
notation: s :=�a, b�.

• Sequences of type MML_SEQUENCE [G] can be declared using the Eiffel
manifest array notation: s :=�a, b�.

• Use {MML_SET [G]}.empty_set to declare an empty set.

• Use {MML_SEQUENCE [G]}.empty_sequence to declare an empty sequence.

For the last two shorthands it is not possible to use the empty array
notation �� due to the intricacies of Eiffel typing.

3http://se.inf.ethz.ch/research/autoproof/reference/
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2.2 SIMPLE_ARRAY and SIMPLE_LIST

When you want to use arrays or lists in verification, you need classes that
have a fully specified interface. The classes from EiffelBase do not offer this,
therefore when verifying algorithms with AutoProof, you should use the two
provided classes SIMPLE_ARRAY [G] and SIMPLE_LIST [G]. Both classes have
a ghost model field sequence of type MML_SEQUENCE [G] and all features are
specified in terms of the model. You can find an API description of these
classes online4.

To make it easier for AutoProof to deal with specifications involving these
classes you should use the sequence model field when writing complex as-
sertions involving the container contents. For example the loop invariant of
the max_in_array function is written as:

1 2≤ i and i≤ a.sequence.count + 1
2 across 1 |..| (i−1) as c all a.sequence[c.item]≤ Result end

3 across 1 |..| (i−1) as c some a.sequence[c.item] = Result end

Were you to replace a.sequence with just a, AutoProof would not verify the
routine anymore (try it!).

2.3 Quantifiers
Eiffel supports bounded universal and existential quantifiers with the across
expression. In our example, where we find the maximum in an array, we can
use this to express the desired postcondition that all elements in the array
are smaller or equal to the result. Universal quantification is done using the
across..all expression. With the Eiffel interval expression 1 |..| a.count we
can quantify over all integers between (and including) 1 and a.count.

across 1 |..| a.count as c all a.sequence[c.item]≤ Result end

The across loop uses a cursor, therefore we have to use c.item to access
the current element of the iteration. For the correctness of the algorithm we
also have to express that the result is an element of the array, not just larger
than all elements. We can do this with an existential quantification using
Eiffel’s across..some loop.

across a.sequence.domain as c some a.sequence[c.item] = Result end

In the last example we used the domain query for the quantification to
show that you can use different approaches to reach the same goals. This
query defined in MML_SEQUENCE returns a set of integer values that contains

4http://se.inf.ethz.ch/research/autoproof/reference/

13

http://se.inf.ethz.ch/research/autoproof/reference/


AutoProof Tutorial March 2015

all index values of the sequence and is therefore equivalent to using an interval
from 1 to a.count (all MML sequences are indexed from 1).

AutoProof supports the following domains for quantification:

• Integer intervals. The quantified variable will be of type INTEGER.

• Sets of type MML_SET [G]. The quantified variable will be of type G.

• Sequences of type MML_SEQUENCE [G]. The quantified variable will be of
type G. This is equivalent to quantifying over the range of a sequence.

• Objects of type SIMPLE_ARRAY [G] or SIMPLE_LIST [G]. The quantified
variable will be of type G. This is equivalent to quantifying over the
sequence of the array or list.

2.4 Termination
AutoProof will verify termination of loops and direct recursive calls (indirect
recursion is not checked). To prove termination you can define loop variants
for loops or decreases clauses for loops and recursive routines.

Loop Variant

The loop variant is an integer expression that is non-negative and decreases
with each loop iteration. This implies that the loop can only be executed a
finite number of times.

1 loop · · ·
2 variant

3 a.count − i

4 end

The loop variant decreases each loop iteration and stays
non-negative.

AutoProof infers loop variants of simple loops. For example a loop with
exit condition a >b will have an inferred loop variant of b − a. In the ex-
ample in Figure 2 specifying the variant is not necessary.

Decreases Clause

In complex algorithms it is possible that an integer value is not enough to
express the loop variant. For these cases AutoProof supports decreases
clauses. A decreases clause can contain multiple arguments of type INTEGER,
MML_SET, or MML_SEQUENCE. The semantics of a decreases clause is that in
each loop iteration the tuple that contains all the elements of the decreases

14
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clause needs to become lexicographically smaller while remaining bounded
from below. The lower bound is 0 for integers and is the empty set or empty
sequence for sets and sequences.

The decreases clause for a loop is written in the loop invariant.

1 from · · ·
2 invariant

3 decreases (a.count − i)
4 until · · ·

Decreases clause equivalent to the previous
loop variant.

For recursive functions the decreases clause is added to the precondition.
Otherwise it behaves like the decreases clause for loops: at each recursive
call the value of the decreases clause must become smaller while remaining
bounded.

1 f (a: SET [INTEGER]; b: INTEGER)
2 require

3 decreases (a, b)
4 do · · · end Decreases clause of a recursive function.

Non-termination

Sometimes it is not desirable to prove termination of an algorithm. For these
cases you can add an empty decreases clause to the loop or recursive function
and AutoProof will skip the termination check.

1 from · · ·
2 invariant

3 decreases ([])
4 until · · · A possibly non-terminating loop.

2.5 Hands-On: Linear and Binary Search
With the knowledge we have so far we now verify algorithms searching an
element in an array. These algorithms do not change the array and are
therefore pure, thus simplifying the specification.
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Linear Search

Task 1: Add the loop variant to verify that the loop terminates.
You should be able to verify linear_search in its current form.

Task 2: Add postconditions to linear_search to verify the test class.
You should be able to verify the test class.

Task 3: Add loop invariants to verify the postcondition.
You should be able to verify both classes completely.

Binary Search

Task 1: Add loop invariants to verify that all array accesses are valid.

Task 2: Add the loop variant to verify that the loop terminates.
You should be able to verify binary_search in its current form.

Task 3: Add precondition to require input arrays to be sorted.

Task 4: Add postconditions to binary_search to verify the test class.
You should be able to verify the test class.

Task 5: Add loop invariants to verify the postcondition.
You should be able to verify both classes completely.

Recursive Binary Search

Task 1: Add the specification to binary_search (you can reuse the speci-
fication of the iterative version).
You should be able to verify the test class.

Task 2: Add precondition to binary_search_recursive_step to require
the input array to be sorted and to verify that all array accesses
are valid.

Task 3: Add a decreases clause to to prove termination of the recursion.
You should be able to verify binary_search_recursive_step in
its current form.

Task 4: Add postconditions to binary_search_recursive_step to verify
the algorithm.
You should be able to verify both classes completely.
Note: you might need intermediate assertions to verify
the postcondition.
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2.6 Ghost State and Ghost Functions
The next examples—iterative and recursive binary search—have precondi-
tions that the input array is sorted. Writing an expression that expresses
this property directly in the precondition can become unwieldy. It is benefi-
cial to write helper functions that capture such properties with a meaningful
name and that allow reuse of the function.

The sorted property was expressed over the sequence of the array, which
is of type MML_SEQUENCE. As mentioned before (see Section 2.1), MML types
are not executable and can only be used for specification purposes. We call
code that is used only for specification purposes ghost code; ghost code is
never executed and only interpreted by the verifier.

To write expressive specifications AutoProof supports ghost code in the
form of ghost functions, using ghost attributes, and writing lemmas. Ghost
code should never influence executable code, therefore assignments from
ghost code to regular attributes is not allowed. AutoProof does not en-
force this currently, so using ghost code outside specifications may lead to
undefined behavior.

Ghost Functions

Ghost functions are useful to write helper functions usable in specifications,
for example to express that a sequence is sorted. To mark a function as ghost
you add a note clause with status: ghost. If the function is also functional,
the note clause can be shortened by combining the two status properties.

1 is_sorted (s: MML_SEQUENCE [INTEGER]): BOOLEAN
2 -- Is ‘s’ sorted?

3 note

4 status: functional, ghost
5 do

6 Result := across 1 |..| s.count as i all

7 across 1 |..| s.count as j all

8 i.item≤ j.item implies s[i.item]≤ s[j.item] end end

9 end

With ghost function like the one shown above we can simplify contracts
and promote reuse of specification constructs, for example in iterative and
recursive binary search (try it!).

Ghost State

Ghost state is introduced by having ghost attributes. These attributes can be
used like regular attributes in contracts, frame conditions, code, and as model
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fields. Most commonly you would use ghost attributes to define model fields
that are then related to existing attributes or other objects through class
invariants and other contracts. A linked list could for example represents its
contents in form of a sequence using a ghost attribute to store the sequence
and then declaring this attribute to be a model field.

To declare a ghost attribute you need to add a note clause to the at-
tribute. The Eiffel syntax for doing this is the following:

1 sequence: MML_SEQUENCE [INTEGER]
2 note status: ghost
3 attribute

4 end

Lemmas

Intermediate assertions are not always sufficient for difficult proofs. In these
cases you can use lemma procedures to support verification. Calling a lemma
procedure has the same effect as calling other procedures: the verifier asserts
the precondition and assumes the postcondition. Lemmas can therefore be
used to add A(x) =⇒ B(x) to the fact space, where A(x) is the precondition
and B(x) is the postcondition of the lemma.

Lemmas are implicitly ghost and pure. You declare a lemma using a
special note clause.

1 lemma (x)
2 note status: lemma
3 require

4 A(x)
5 do

6 -- Proof that A(x) implies B(x)

7 ensure

8 B(x)
9 end

Lemmas are proven like a regular procedures. You might need to imple-
ment a proof; sometimes you can use recursion in a lemma which is akin to
an induction proof.

2.7 Accessing Pre-state
Eiffel allows the use of old expressions in postcondition to express the effect
of a routine in relation to the pre-state. This syntax is limited, as it cannot
be used in across expressions or in the body of the routine (e.g. in loop
invariants).
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AutoProof offers an extension to the old mechanism through a ghost
query old_ defined in ANY. This query can be used anywhere in the code or
in the postcondition to reference the value of an expression in the pre-state
of the routine.

check s.old_[i] = s[i] end Assertion that item s [i] is unchanged.

2.8 Integer Overflows
AutoProof can check a program for integer overflows. By default overflow
checking is disabled. You can enable it among AutoProof’s options or, if you
use the command line version, with the −overflow command line option.

2.9 Hands-On: Sorting
The next examples are about sorting of arrays. The algorithms shown here
are in-place algorithms that operate on the array directly. As a preliminary
exercise we look at the notion of permutation of arrays and how to express
this in AutoProof.

Permutation

Task 1: Find the correct encoding of permutation (only one is correct).

Task 2: For each incorrect encoding try to find two sequences that success-
fully pass the check instruction while not being real permutations.

Gnome Sort

Task 1: Add the frame specification, pre- and postcondition to gnome_sort.
Add implementation of is_part_sorted.
You should be able to verify the test class.

Task 2: Add loop invariants to verify that all array accesses are valid.

Task 3: Add loop invariants to verify the postcondition.
You should be able to verify both classes completely.

Task 4: Enable overflow checking and verity absence of overflows.
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Insertion Sort

Task 1: Add a precondition and loop invariant to insertion_sort and the
precondition to swap to verify that all array accesses are valid.

Task 2: Add the loop variants to verify that the loops terminate.
You should be able to verify insertion_sort and swap in its cur-
rent form.

Task 3: Add the postcondition to insertion_sort.
You should be able to verify the test class.
You might want to introduce helper functions.

Task 4: Add the postcondition to swap and the necessary loop invariants
to verify the postcondition.
You should be able to verify both classes completely.

Task 5: Enable overflow checking and verity absence of overflows.
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3 Object Consistency and Ownership
For this section we use an unbalanced binary tree as an example. Each tree
node has a value and one or two children. The maximum function returns the
maximum element in the tree. An excerpt of the tree node class is shown in
Figure 3.

3.1 State of an Object
AutoProof uses an invariant model where objects can be in a consistent state
or in a potentially inconsistent state. Consistent objects are closed and their
class invariants are guaranteed to hold. Inconsistent objects are open and
their class invariant is potentially violated. Objects can only be modified
when they are open, changing the value of an attribute is not allowed when
an object is closed.

AutoProof supports a dynamic ownership model where objects can be
owned by other objects. The ownership relations can evolve during runtime.
Objects that are unowned or whose owner is open are called free. We define
a shorthand for objects that are closed and free calling them wrapped. When
an object is in a consistent state, the ownership tree rooted in that object is
guaranteed to be consistent as well.

To model the object consistency and ownership relation, each objects has
a boolean ghost field closed, a ghost field owner pointing to the potential
owner of the object, and a ghost field owns that contains the set of all owned
objects. The relationship between the owns set and owner field is guaranteed
to hold for objects in a consistent state. A special case is Void which is
always open. Void can therefore never be owned and must not be part of the
owns set.

We illustrate the possible object states on the example object structure
of Figure 4. The object structure consist of six objects:

• Object a is closed, therefore its class invariant is guaranteed to hold. It
does not have an owner and thus is free. As it is both free and closed,
it is also wrapped. The object a owns the two objects b and c. This is
defined through its owns set, i.e. a.owns ={b, c}.

• Objects b and c are both owned by a, so their owner ghost field points
to a. Since they are owned they are not free. As their owner a is closed,
the two objects b and c are closed as well, as they are in a’s ownership
domain.
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1 class TREE_NODE
2
3 create
4 make, make_with_children
5
6 feature {NONE} -- Initialization
7
8 make (a_value: INTEGER)
9 -- Initialize node.

10 note
11 status: creator
12 do
13 value := a_value
14 ensure
15 value_set: value = a_value
16 no_left: left = Void
17 no_right: right = Void
18 end
19
20 make_with_children (a_value: INTEGER;
21 a_left, a_right: TREE_NODE)
22 -- Initialize node.
23 note
24 status: creator
25 explicit: contracts
26 require
27 a_left.is_wrapped
28 a_right.is_wrapped
29
30 modify (Current)
31 modify_field ("owner", [a_left, a_right])
32 do
33 value := a_value
34 left := a_left
35 right := a_right
36 ensure
37 value_set: value = a_value
38 left_set: left = a_left
39 right_set: right = a_right
40 default_is_closed: is_wrapped
41 end
42
43 feature -- Access
44
45 value: INTEGER
46 -- Value of this node.

47
48 left, right: TREE_NODE
49 -- Left and right node (Void if none).
50
51 feature -- Basic operations
52
53 maximum: INTEGER
54 -- Maximum value of this tree.
55 require
56 decreases (sequence)
57 do
58 Result := value
59 if left 6= Void then
60 check owns.has (left) end
61 Result := Result.max (left.maximum)
62 end
63 if right 6= Void then
64 check owns.has (right) end
65 Result := Result.max (right.maximum)
66 end
67 ensure
68 max: across sequence.domain as i all
69 sequence[i.item]≤ Result end
70 exists: sequence.has (Result)
71 end
72
73 feature -- Model
74
75 sequence: MML_SEQUENCE [INTEGER]
76 -- Sequence of values.
77 note
78 status: ghost
79 attribute
80 end
81
82 invariant
83 owns_def: owns = {like owns}[[left, right]] / Void
84 sequence_def: sequence =
85 (if left = Void
86 then {like sequence}.empty_sequence
87 else left.sequence end) +
88 {like sequence}[�value�] +
89 (if right = Void
90 then {like sequence}.empty_sequence
91 else right.sequence end)
92 end

Figure 3: Excerpt of the binary tree example.
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a

cb

closed
free

wrapped

a.owns
closed
not free
not wrapped

d

fe

open
free
not wrapped

d.owns

Figure 4: Example of an object structure at run-time.

• Object d is open and may potentially be in an inconsistent state, so its
class invariant is not guaranteed to hold. It does not have an owner and
is therefore free. The object d owns the two objects e and f, defined
through its owns set.

• Object e is closed and therefore consistent. Its owner is d, but since d
is open, e is considered to be free. Being both closed and free means
that e is wrapped.

• Object f is open and potentially inconsistent. Analogous to e it is free,
as its owner d is open.

The example illustrates the difference between ownership trees of open
and closed objects. While ownership trees of consistent objects are guaran-
teed to be consistent as well—all objects in the ownership tree including the
root object are closed—, this property does not hold for ownership trees of
potentially inconsistent objects. The ownership tree of an open object may
contain objects that are open and objects that are closed.

3.2 Object State Queries
AutoProof offers ghost functions that can be used to query an object’s state
in assertions and specifications:

• is_wrapped: BOOLEAN – is the object wrapped (closed and free)?

• is_free: BOOLEAN – is the object free (unowned or owner is open)?

• is_open: BOOLEAN – is the object open (potentially inconsistent)?

• closed: BOOLEAN – is the object closed (consistent)?
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• owner: ANY – owner of the object.

• owns: MML_SET [ANY] – set of owned objects.

• inv: BOOLEAN – does full invariant of the object hold?

• inv_only (t): BOOLEAN – does the invariant with tag t hold?

• inv_without (t): BOOLEAN – does the invariant except for tag t hold?

The last two functions inv_only and inv_without allow to reuse specifi-
cation constructs. The argument to these functions is a list of manifest strings
containing invariant tags. Given the class of Figure 3 the condition that the
sequence is consistent can be written as inv_only ("sequence_def"). This
helps reduce the annotation burden for classes with comples class invariants.

3.3 Encoding Ownership
Ownership in AutoProof is used by adding objects to and removing objects
from the owns set. The usual way of doing this is by defining the owns set as
part of the class invariant. The binary tree example has the following class
invariant:

owns_def: owns = {like owns}[[left, right]] / Void

The owns set consists of the two objects left and right unless they are Void.
As in other situations, the encoding of the owns set influences the ability of
AutoProof to reason about it. In the maximum function of the binary tree we
have introduced two assertions owns.has (left) and owns.has (right) in the
respective branches. Where we to remove these check instructions AutoProof
would fail in verifying the function (try it!).

This is due to the use of the set removal operation / Void, which makes
the reasoning about the set more difficult and forces us to help the verifier
in the proof. Were we to use a different encoding of the owns set in the class
invariant we could remove these assertions. The following encoding is more
verbose but better suited for the verifier:

1 owns =
2 if left = Void then
3 if right = Void then {like owns}[[]] else {like owns}[[right]] end
4 else
5 if right = Void then {like owns}[[left]] else {like owns}[[left, right]] end
6 end

With this encoding there is no need for the intermediate check instructions
anymore (try it!).
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3.4 Wrapping and Unwrapping
The two ghost procedures wrap and unwrap are used to change an object
from being unwrapped to being wrapped and vice versa. Figure 5 gives an
overview of how the object consistency changes when these procedures are
called.

a

cb

a

cb

a.unwrap

a.wrap

open
free
not wrapped

d e

ownerowner

d e

ownerowner

closed
free

wrapped

a.owns a.owns

closed
not free
not wrapped

Figure 5: Change of object state on wrapping and unwrapping.

Since wrapping and unwrapping changes the boolean ghost field closed,
that field must be writable when either of these procedures are called. This
is also the reason we had to add the field closed to the modifies clause in
the withdraw procedure of the account example (see Section 1.4).

wrap and unwrap are axiomatized in the background theory of the verifier.
Their definition in the class ANY does therefore not reflect their real semantics.
The actual specification for wrap and unwrap could be written as follows:

1 wrap
2 -- Wrap ‘Current’.
3 require
4 is_open
5 inv
6 across owns as o all o.item.is_wrapped end
7 modify_field ("closed", Current)
8 modify_field ("owner", owns)
9 ensure

10 is_wrapped
11 across owns as o all o.item.owner = Current end
12 end

13 unwrap
14 -- Unwrap ‘Current.
15 require
16 is_wrapped
17 modify_field ("closed", Current)
18 ensure
19 is_open
20 across owns as o all
21 o.item.is_wrapped end
22 end

3.5 Defaults
AutoProof uses implicit default contracts, default wrapping, and default as-
signments of ghost fields to remove the annotation burden. The default con-
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tracts and wrapping depend on type and visibility of routines. The default
assignment to ghost fields depends on their definition.

Creation routines require by default that all arguments are wrapped. In
addition, the Current object will be implicitly wrapped at the end of the
routine body and the postcondition will assert that Current is wrapped.

1 make (args)
2 require

3 ∀o ∈ args : o.is_wrapped
4 do

5 · · ·
6 Current.wrap
7 ensure

8 Current.is_wrapped
9 ∀o ∈ args : o.is_wrapped

10 end

Pure functions can by default be called on closed objects. It is therefore
not necessary to unwrap the object before calling a function. Also there is no
default postcondition since the objects are not mutated during the execution.

1 pure_function (args): type
2 require

3 Current.is_closed
4 ∀o ∈ args : o.is_closed
5 do · · · end

Public procedures and public impure functions require by default
that all objects are in a consistent state, as they are callable from client
code.

1 public_procedure (args)
2 require

3 Current.is_wrapped
4 ∀o ∈ args : o.is_wrapped
5 do

6 Current.unwrap
7 · · ·
8 Current.wrap
9 ensure

10 Current.is_wrapped
11 ∀o ∈ args : o.is_wrapped
12 end
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Private procedures and private impure functions are only callable
from a restricted set of clients, for example from the class itself. Since all
public routines by default unwrap the Current object, private routines by
default assume the object to be open.

1 private_procedure (args)
2 require

3 Current.is_open
4 do · · ·
5 ensure

6 Current.is_open
7 end

Ghost fields that have a definition in the class invariant of the form
fieldname= expression will be assigned implicitly every time the object is
wrapped. This is the reason that the two ghost fields owns and sequence
of the binary tree example are never explicitly assigned. AutoProof assigns
these fields implicitly at the end of each procedure when the implicit call to
wrap takes place.

Functional functions are often used in contracts and class invariants.
Therefore they may operate on inconsistent objects and have no default pre-
conditions.

Disabling Defaults

It is possible to disable defaults by adding the following note clauses to
routines and classes:

• explicit: contracts – disable default pre- and postcondition; appli-
cable to a routine or a class.

• explicit: wrapping – disable default unwrap and wrap instructions;
applicable to a routine or a class.

• explicit: fieldname – disable default assignment to field fieldname
before wrapping; applicable to a class.

3.6 Modification of Owned Objects
Modifies clauses define a set of modifiable objects. Whenever an object is
modifiable then the transitive closure of all owned objects is also modifiable.
It is therefore not necessary to add owned objects to a modifies clause when
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the owner is modifiable. A modifies clause of modify (o) is sufficient to
potentially modify objects owned by o. Modifications of owned objects still
require that the modified object is unwrapped.

3.7 Hands-On: Ring Buffer
The next exercise is about implementing a ring buffer backed by an array.
This will highlight how to use ownership and model-based contracts to design
a data structure.

Task 1: Add ownership definition for the data array to the class invariant.

Task 2: Add class invariants for the bounds of start and free.

Task 3: Add the model fields, model declaration, and class invariant de-
scribing the model.

Task 4: Add the specifications to the routines of RING_BUFFER. The tests
in the test class can help you to get the specification right.
You should be able to verify both classes completely.
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